
Submitted to International Joint
Conference on Neural Networks, 2002.

A Recurrent Neural Network Approach to Virtual Environment Latency Reduction

Aaron Garrett
Knowledge Systems Laboratory

Jacksonville State University
Jacksonville, AL 36265

aarong@ksl.jsu.edu

Mario Aguilar, Ph. D.
Knowledge Systems Laboratory

Jacksonville State University
Jacksonville, AL 36265

marioa@ksl.jsu.edu

Yair Barniv, Ph. D.
NASA/Ames Research Center

Human Factors Research Division
Moffet Field, CA 94035-1000

ybarniv@mail.arc.nasa.gov

Abstract – We present a recurrent neural network system

designed to predict future angular acceleration of the human
head from current angular acceleration data. These predictions
can be used to supplement head tracking in virtual
environments in order to reduce latency and increase tracking
accuracy, thus enhancing the user’s performance and comfort.

I. INTRODUCTION

With increasingly smaller and faster computing
machinery, the use of virtual environments (VE) in everyday
applications is becoming more a matter of fact, rather than a
matter of science fiction. However, using virtual
environments is not without its difficulties. One of the most
notable problems facing current VE applications is the
perceptible latency that is experienced by the user as the
computer displays are updated. Such perceptible latency has
been shown to have undesirable effects on users of virtual
environments, including a lack of accuracy during tracking
tasks, motion sickness, and loss of immersion [1]. Ellis, et al,
have shown that visual latency, more than spatial sensor
distortion or low update rates, is the primary cause of RMS
tracking errors [2]. This latency comes in three different
forms – rendering lag, application-dependent processing lag,
and user input device lag [3]. Rendering lag is due to the
amount of time it takes for the computer screen to be updated.
Application-dependent processing lag is the latency that
arises from the computation of the three-dimensional model.
This latency is entirely dependent on the complexity of the
model. Finally, user input device lag is the lag introduced
from the necessary communication between the position and
orientation tracking system and the VE application. Because
of its relevance to our current work, in this paper we will only
consider this final type of lag.

User input device lag can range between 10ms and 120
ms [3]. Because of the detrimental effects that often result
from lag in virtual environments, many motion trackers
implement a prediction mechanism within the tracker itself
that attempts to compensate for the device lag. This
prediction mechanism is often no more than a crude
averaging and extrapolation from the current movement to
the next movement in time. While such a scheme can be
useful and effective in certain situations, it manifests serious
problems if the user moves quickly or changes velocity.
Thus, in order to avoid experiencing the cyber-sickness
caused by lag, the user must make slow, deliberate
movements [4]. Also, using these approaches, predictions out
to a useful range (i.e., 20–40 ms) are subject to very large
errors. If differential acceleration data (as generated by linear

accelerometers or rate gyros) is used, more accurate
extrapolation systems can be created because of the higher
resolution of the original data. We will discuss these
extrapolation methods in more detail in Section III.

In an effort to improve upon the prediction within the
tracker, itself, other prediction mechanisms have been
implemented which make use of Kalman filters. For instance,
Friedmann, et al, used Kalman filters to predict the position,
velocity, and rotations of a Polhemus sensor [4]. Their results
show that accurate predictions can be made except at points
where the user changes acceleration and/or direction very
sharply. Such unexpected changes were also the major cause
of problems for the on-board prediction method of the
trackers themselves. Friedmann, et al, dealt with this problem
by using a multiple model approach. In this approach, several
different Kalman filters were created to accommodate
different types of user movements. At each instance of
prediction, the filter with the maximum likelihood was used.

While the above study dealt with both positional
prediction and rotational prediction, it has been shown that
users are much more affected by rotational latency than
positional latency. This has been attributed to two main
causes. First, because of the limitations of most motion
trackers, positional changes are limited to a small range.
Thus, users tend to make such changes infrequently. Second,
rotational changes generally cause more noticeable changes
in the scene than do positional changes [5]. Because of this
fact, it seems reasonable to focus current motion prediction
research to deal with only the rotational accelerations of the
user. In fact, Ellis, et al, carried out an experiment in which
Kalman filters were used to predict only the angular
accelerations of user head motions within a virtual
environment [6]. These angular accelerations are based on
approximations using the Polhemus tracker measurements,
not on actual rate gyro data which would be much more
accurate.

Using differential acceleration data collected from rate
gyros is indeed an extremely powerful approach to head
movement prediction. However, to the best of our
knowledge, linear approximation techniques such as Kalman
filters have only been applied to approximated acceleration
data. In an effort to make use of collected differential
acceleration data and to move beyond the linear filtering
techniques that have been applied to date, we present a
recurrent neural network approach to the problem of angular
acceleration prediction. However, rather than using angular
acceleration about all three axes, we constrain the problem by
using angular acceleration about the z-axis only. (This would

Submitted to International Joint
Conference on Neural Networks, 2002.

be rotation about the vertical.) This constraint was made to
allow us to focus more closely on the other aspects of the
work, such as choice of network parameters and types of
error measurements. Also, because users within virtual
environments perform such rotations more often than
rotations about the x- or y- axes, most of the information
about user motion is carried by this variable. Because of this,
a neural network trained on z-axis rotational data could be
easily extended to encompass the x- and y- axis information
as well. In this way, where many different Kalman filters may
be needed to accurately model a majority of user head
motions, one neural network would suffice.

Table 1

Summary of Features

The layout of the remainder of the paper is as follows. In
Section II, we discuss the experimental setup for data
collection and outline the particular neural network
architecture chosen. In Section III, we present our findings
along with a discussion of the error measurement that was
used. We also contrast our results against a widely used
prediction system embedded within a motion tracker. Finally,
in Section IV we draw our conclusions.

II. METHODS

A. Experimental Setup

An InterSense IS-600-series motion tracker was used to
collect angular acceleration data from two different subjects.
The sampling rate for both subjects was set to 160 Hertz.
Each subject was fitted with a helmet containing the inertial
sensors and was instructed to perform movements from a pre-
defined set. Such movements included abrupt movements
from right to left; smooth, continuous movements from right
to left; smooth movements from right to left with a pause in
the center; and abrupt movements from right to left with a
pause in the center. These movement types were chosen to be
representative of head motion that would be likely within a
virtual environment. For instance, the abrupt motions were
chosen to be similar to startled movements, and the
continuous motions were chosen to be similar to casual
scanning movements.

Two other motions were also included that contained
some rotation about the vertical along with rotation about the
other two axes. These were movements in a clockwise circle
(as if the nose were following the hand of a clock), movement
along an upper-right to lower-left diagonal, and movements
along an upper-left to lower-right diagonal. These movements
were included in order to test the neural network’s ability to
generalize to different movements.

After each experiment, the angular acceleration data
collected was saved into a file for use with the learning
system. In this way, all training could be done off-line
without the need for more data collection.

B. Feature Description

No learning system is effective without information-rich

inputs into that system. This means that the extraction of
appropriate features that characterize the inputs is essential

for success. The set of angular acceleration-based features
that we used to produce the results discussed below are
summarized in Table 1. The moving average, average slope,
average frequency, and average period are self-explanatory.
The number of zero-crossings at time t, Zt, is a measure of the
frequency of the curve. It is defined to be the number of
instances where the angular velocity is 0 within a 25 ms
window. It is defined by the following equation:

∑
−=

=
t

wti
t izZ)(, where (1)

 =

=
otherwise

taif
tz

0
0)(1

)(

The curve complexity is a feature that attempts to measure
the “shape” of the curve [7]. Equation 2 provides the
definition of this feature (referred to as the “waveform” in
[7]):

∑
−=

−−=
t

wti
iaiatW)1()()((2)

The cumulative, non-overlapping gradient was found to be
the most useful feature for predicting the angular acceleration
data. Equation 3 defines this feature:

∑∑

=

=

−−−=
w
t

i

w
t

i
cum itaitatG

2

0

2

0
)()2()((3)

This feature provides a measure of total change at the current
time from all past movements. It provides a running measure
of change per full movement. This is because the measure
“resets” itself whenever the angular acceleration reaches zero.

Feature
Moving Average

Description
Average angular velocity within a
25 ms window

Average Slope

Average slope of angular velocity
within a 25 ms window

Number of Zero-crossings

Curve Complexity

Cumulative, Non-overlapping
Gradient

Number of instances where the
angular velocity was 0 within a 25
ms window

Average Frequency Instantaneous frequency at each
time-step

Average amount of time between
zero-crossings within a 25 ms
window

Average Period

Cumulative measure of the
gradient using non-overlapping
1.5 ms windows

Sum across instantaneous
gradients within a 25 ms window

Submitted to International Joint
Conference on Neural Networks, 2002.

This is very useful when trying to predict on a movement-by-
movement basis. (In each of these equations, the w term
represents the window size.)

We found that the seven features presented above
provided a good representation of the dynamics and
characteristics of the raw angular acceleration data. As such,
these features were normalized and used as the inputs into the
recurrent neural network.

C. Network Architecture

A recurrent neural network known as an Elman neural

network was used as our learning system. The Elman neural
network is based on the back-propagation algorithm. It
includes the typical feed-forward connectivity with the
addition of a recurrent connection from the output of the
hidden layer at time t to the input of the hidden layer at time
t+1. This recurrent connection gives the network an
exponential “memory” of past events [8]. This “memory”
makes the Elman network very effective in learning time-
sequential patterns, such as the type we see in angular
acceleration data.

The Elman network was implemented in Matlab 6.1 using
the Neural Network Toolbox. The appropriate parameters for
the network, which include the number of hidden neurons,
the training function, the transfer functions, etc., were
determined experimentally. The final parameters chosen were
as follows:
• Number of hidden neurons – 15
• Training function – BFGS quasi-Newton method
• Transfer functions – Hyperbolic tangent sigmoid

function for hidden neurons; linear function for output
neurons

• Search function – One-dimensional minimization using
the method of Charalambous [9]

• Weights initialization function – Nguyen-Widrow layer
initialization function

This set of network parameters was used to generate all of the
data presented in the remainder of the paper.

III. RESULTS

A. Results of the Elman Network

We found that training the neural network with a single
example of two movements was sufficient to achieve good
generalization across the data set. We trained the network on
an abrupt right-left movement from one subject along with a
continuous right-left motion from a second subject. The
network was then tested against a comprehensive set of
representative movements from all subjects. The results of
this test are shown in Figure 1. In this figure, the red solid
curve corresponds to the actual rotational acceleration 20ms
in the future. The blue dashed-dotted curve corresponds to the
predicted angular acceleration as predicted by the neural
network. Here, a successful prediction would show a large
amount of overlap between the two curves. This

representation scheme was used for all of the figures
presented within the paper, except where noted otherwise.

Figure 2 displays an enlarged image of the section of the
curves contained within the solid black rectangle in Figure 1.
In this figure, the qualitative degree of match between the
two curves can be seen in greater detail. Clearly, the neural
network is capable of predicting well even in those areas of
abrupt changes in angular acceleration.

Figure 1. Results of Neural Network on Comprehensive Test Set.

Acceleration (y-axis) during left-righ movements is plotted against time
(x-axis).

Figure 2. Enlarged Section of Figure 1 (Solid Black Rectangle)

In addition to qualitative evaluations of performance, we
also used the Mean Squared Error (MSE) measurement to
determine our predictive accuracy. For the data above, the
MSE was 0.0357. This measure does match our qualitative
assessment of the predictive ability of the neural network.
However, the MSE is not entirely effective when assessing
accuracy of prediction in the temporal domain as is required
here. We will consider this point in more detail in the next
section.

Submitted to International Joint
Conference on Neural Networks, 2002.

B. Comparison with Extrapolation Prediction

To the best of our knowledge, the procedure used within
the InterSense IS-600-series trackers makes use of a second-
order extrapolation scheme in order to predict future angular
accelerations from current data [InterSense spokesman,
personal communication]. This extrapolation is achieved
using the following equation:

)()1(
2
1)()()(0000 tanntantanta ′′−+′+=+ (4)

Here, t0 is the current time point, and n represents the number
of milliseconds beyond which we want to extrapolate. The
equation presented above is based on second-order Taylor
polynomial approximations. It should be noted that this
extrapolation method amplifies noise, especially when the
temporal extrapolation distance is high. To combat this
problem, we introduced a slight smoothing by using a moving
average with a small window size (w = 5ms). While this
removed some of the noise in the resulting prediction curve, a
large amount of noise remained.

Figure 3. Comparison of Extrapolation with Nerual Network Prediction

 The extrapolation function discussed above was applied
to the comprehensive dataset mentioned in Part A. The
angular acceleration data was predicted 20ms in advance, just
as with the neural network approach. The qualitative results
of this extrapolation are displayed in Figure 3. In this figure,
the extrapolation curve was added to the existing curves from
Figure 1. This curve can be seen as a dotted green curve in
Figure 3 (as well as in all other figures, except where
otherwise noted).

Figure 4 presents the detail of the highlighted section of
Figure 3 (denoted by the black rectangle near the right side of
the graph). It can be observed that the extrapolation curve
contains large amounts of noise, whereas the neural network
prediction has a much tighter match to the target curve. The
noise generated by the extrapolation would be revealed

within a virtual environment as high-frequency jitter. Once
again, as a more quantitative comparison, the MSE for the
extrapolation was calculated to be 0.0502. This is
significantly higher than the error generated by the neural
network system, but as we mentioned earlier, the MSE is not
sensitive to temporal pattern matches. In the context of this
work, the temporal pattern of the curves carries a significant
amount of the predicted information.

Figure 4. Enlarged Section of Figure 3 (Solid Black Rectangle)

Figure 5. Comparison of Low Frequency Information.
Energy (y-axis) vs frequency (x-axis, not in Hz due to subsampling)

 In an effort to overcome a similar problem, Liang, et al,
turned to the frequency domain to compare different curves
[5]. We chose to do a similar qualitative comparison for our
results. In this way we can qualitatively assess the results not
only spatially, but also spectrally. Figure 5 displays the low
frequency information of each of the three curves from
Figure 3. Essentially, Figure 5 reveals that both the neural
network prediction and the extrapolation match closely with
the actual angular acceleration curve within the low

Submitted to International Joint
Conference on Neural Networks, 2002.

frequency domain. However, when we consider high
frequency information, as in Figure 6, we see that the
extrapolation procedure generates considerable error. It is
within this range that abrupt acceleration changes would
occur and where other methods have failed to produce
accurate prediction. It can be observed that the neural
network prediction achieves a significant improvement over
the extrapolated results.

Figure 6. Comparison of High Frequency Information

IV. CONCLUSIONS

 The Elman-based neural network system presented here
has been shown to predict future angular velocities with a
high degree of accuracy. The qualitative results show that,
given a small representative sample of movements, the
Elman-based system can effectively generalize to predict
across subjects and movement types. When compared with
the current extrapolation methods built into head-tracking
devices, we have demonstrated that a neural network system
tends to produce increased accuracy.
 The need for quantitative measures of error in this type of
domain is a important research issue. In the absence of a true
measure of temporal error, we introduced another qualitative
measurement based on the work of Liang et al [5] that makes
use of the frequency analysis of acceleration curves. While
this does make an even stronger qualitative statement about
the high frequency error of an extrapolation system, it does
not give us a true quantitative measure of error between the
predicted and actual angular accelerations. Ongoing research
is targeted toward finding a set of quantitative measures
necessary for further validation.

ACKNOWLEDGEMENTS

Support for this research was provided in part by a
NASA-ASEE Summer Fellowship awarded to the first and
second authors. Support was also provided through a NASA-
Ames Research Center contract to the second author. The

authors wish to thank Steve Ellis and Dov Adelstein at the
HCI division, NASA Ames for their helpful comments and
suggestions.

REFERENCES

[1] K. M. Stanney, R. R. Mourant, and R. S. Kennedy,
“Human Factors Issues in Virtual Environments: A
Review of the Literature,” Presence, Vol. 7:4, pp. 327-
351, 1998.

[2] S. R. Ellis, B. D. Adelstein, S. Baumeler, G. J. Jense, and
R. H. Jacoby, “Sensor Spatial Distortion, Visual Latency,
and Update Rate Effects on 3D Tracking in Virtual
Environments,” Proceedings of VR ’99, pp. 218-221,
1999.

[3] M. Wloka, “Lag in Multiprocessor Virtual Reality,”
Presence, Vol. 4:1, pp. 50-63, 1995.

[4] M. Friedmann, T. Starner, and A. Pentland, “Device
Synchronization Using an Optimal Linear Filter,”
Computer Graphics ACM SIGGRAPH, pp. 57-62, 1992.

[5] J. Liang, C. Shaw, and M. Green, “On Temporal-Spatial
Realism in the Virtual Reality Environment,”
Proceedings of the 1991 User Interface Software
Technology, pp. 19-25, 1991.

[6] J. Y. Jung, B. D. Adelstein, and S. R. Ellis, “Predictive
Compensator Optimization for Head Tracking Lag in
Virtual Environments,” Proceedings of IMAGE 2000
Conference, 2000.

[7] H. Huang and C. Chen, “Development of a Myoelectric
Discrimination System for a Multi-degree Prosthetic
Head,” Proceedings of 1999 IEEE International
Conference on Robotics and Automation, pp. 2392-2397,
1999.

[8] J. L. Elman, “Finding Structure in Time,” Cognitive
Science, Vol. 14, pp. 179-211, 1990.

[9] C. Charalambous, “Conjugate-gradient algorithm for
efficient training of artificial neural networks,” IEEE
Proceedings, Vol. 39 (3), pp. 301-310, 1992.

	B. Feature Description
	C. Network Architecture

